Как сравнить процессоры и выбрать оптимальный

Фундамент любого процессора: архитектура набора команд

Первое, на что натыкаешься при разборе любого процессора — это на архитектуру набора команд (ISA). Архитектура является чем-то вроде фундамента работы процессора и именно от нее зависит то, как он работает и как все внутренние системы взаимодействуют друг с другом. Существует огромное количество архитектур, но самыми распространенными являются x86 (преимущественно в стационарных компьютерах и ноутбуках) и ARM (в мобильных устройствах и встроенных системах).  

Чуть менее распространенными и более нишевыми являются MIPS, RISC-V и PowerPC. Архитектура набора отвечает за ряд основных вещей: какие инструкции процессор может обрабатывать, как он взаимодействует с памятью и кэшем, как задача распределяется по нескольким этапам обработки и др.  

Чтобы лучше понять устройство процессора, разберем его элементы в том порядке, по которому выполняются команды. Различные типы инструкций могут следовать разными путями и использовать разные компоненты ЦП, поэтому здесь они будут обобщены, чтобы охватить максимум. Начнем с базового дизайна одноядерных процессоров и постепенно будем переходить к более продвинутым и сложным экземплярам.  

А вы будете играть на компьютере?

Следующий момент, с которым нужно заранее определиться: игровое будущее компьютера. Для «Весёлой фермы» и других простеньких онлайн-игр подойдёт любая встроенная графика. Если покупать дорогую видеокарту в планы не входит, но поиграть хочется, тогда нужно брать процессор с нормальным графическим ядром Intel Graphics 530/630/Iris Pro, AMD Radeon RX Vega Series. Пойдут даже современные игры в Full HD 1080p разрешении на минимальных и средних настройках качества графики. Можно играться в World of Tanks, GTA, Доту и другие.

Если будет докуплена мощная видеокарта, то есть смысл брать процессор без встроенной графики вовсе, и сэкономить на этом (либо получить больше мощности за ту же цену). Круг можно сузить таким образом:

  • У AMD процессоры серии FX для платформы AM3+ и гибридные решения A12/10/8/6/4, а также Athlon X4 под FM2+/AM4
  • У Intel — процессоры серии SkyLake и Kaby Lake для платформ LGA1151 и LGA2066 и устаревающие BroadWell-E для LGA2011-v3 (есть всего несколько моделей).

Ещё тут нужно учесть, что мощной видеокарте и процессор нужен под стать. Чётких ответов на вопросы типа «какой нужен процессор на эту видеокарту» я не дам. Этот вопрос нужно изучать самостоятельно, читая соответствующие обзоры, тесты, сравнения, форумы. Но дам пару рекомендаций.

Во-первых, нужен процессор минимум 4-х ядерный. Ещё больше ядер не сильно добавят fps в играх. При этом, оказывается, что 4-х ядерники AMD лучше подходят для игр, чем 2-х ядерные Intel при такой же или даже меньшей цене.

Во-вторых, можно ориентироваться так: стоимость процессора равна стоимости видеокарты. На самом деле, не смотря на десятки моделей, сделать правильный выбор не сложно.

История появления процессоров

Теперь, когда всё стало немного понятнее и слово процессор у вас не ассоциируется с системным блоком, давайте совершим небольшой экскурс в историю и посмотрим, как появились процессоры и что вообще способствовало их появлению.

Первые ЭВМ (электронно-вычислительные машины) появились в 40-х годах прошлого века. Изначально в их основе использовались лампы и примитивные радиоэлементы по типу резисторов и реле. Размер таких ЭВМ мог достигать нескольких квадратных метров.

На фотографии изображена первая ЭВМ — ENIAC. Ее вес составлял порядка 30 тон, и внутри располагалось 18000 электронных ламп.

Но прогресс не стоит на месте, и в 50-х годах громоздкие электронные лампы сменили транзисторы, которые, в свою очередь, в 60-х годах были вытеснены интегральными микросхемами, которые вмещали в себя уже тысячи таких транзисторов.

Всё изменилось в 1971 году, когда компания Intel представила первую 4-битную однокристальную микросхему Intel 4004. Именно Intel 4004 можно считать первым прародителем процессоров, нежели более ранние прототипы по типу электронных ламп и транзисторов. После Intel 4004 индустрия развития стала шагать семимильными шагами, и каждый год инженерам и конструкторам удавалось разработать более современный микропроцессор, который был мощнее и производительней своего приемника.

Мы умышленно не будем перечислять огромный перечень процессоров в силу того, что это уже получится полноценная, отдельная статья про историю процессоров. Поверьте, там есть о чём рассказывать.

В 1993 году компанией Intel был представлен первый полноценный десктоп процессор первого поколения P5, который впоследствии был переименован в Pentium.

Но не стоит полагать, что двигателем прогресса была только компания Intel, свой вклад в индустрию электроники и центральных процессоров внесли такие компании, как Motorola, Zilog, MOS Technology, Sinclair Research (ZX Spectrum). СССР тоже не отставали, и в 70-х годах Российские разработки в области ЭВМ вполне могли потягаться с зарубежными аналогами. Но в силу того, что СССР перенаправила силы из этой области в другие отраслевые технологии, было принято решение отказаться от собственного производства и впоследствии использовать сертифицированные импортные технологии.

Команды и иерархия памяти

Чтобы лучше понять принцип работы команд, связанных с памятью, стоит обратить внимание на концепцию иерархии памяти — связь между кэшем, оперативной памятью и главным запоминающим устройством. Когда процессор работает с командой памяти, данных о которой у него еще нет в регистре, он будет продвигаться по иерархии памяти, пока не найдет нужную информацию

Большинство современных процессоров имеют три уровня кэша: первый, второй и третий. Сначала процессор проверит наличие необходимых команд в кэше первого уровня — самом маленьком и быстром из всех. Зачастую этот кэш разделен на две части: первая отведена под данные, а вторая — под команды. Помните, команды извлекаются процессором из памяти так же, как и любые другие данные. 

Типичный кэш первого уровня может состоять из нескольких сотен килобайт. Если процессор не найдет в нем то, что нужно, то перейдет к проверке кэша второго уровня (размером в несколько мегабайт), а затем — третьего (уже занимающего десятки мегабайт). В случае, если необходимых данных не будет и в кэше третьего уровня, то поиск будет производиться в оперативной памяти, а затем в накопителях. С каждым подобным «шагом», увеличивается не только объем доступных данных, но и задержка.  

После того, как процессор нашел необходимые данные, он отправляет их вверх по иерархии памяти для сокращения время поиска, на случай, если они понадобятся в дальнейшем. Для справки: процессор может считывать данные во внутреннем регистре всего за один-два цикла, в кэше первого уровня понадобится немногим больше, в кэше второго уровня уже около десяти, а третьего — несколько десятков циклов. Если приходится задействовать память или накопители, то процессору может понадобятся десятки тысяч, а то и миллионы циклов. В зависимости от системы, у каждого ядра процессора может быть собственный кэш первого уровня, общий с другим ядром кэш второго уровня и кэш третьего уровня у группы из четырех или более ядер. Более подробно речь о многоядерных процессорах пойдет позже.

Энергопотребление

Энергопотребление процессора тесно связано с технологией его производства. С уменьшением нанометров техпроцесса,  увеличением количества транзисторов и повышением тактовой частоты процессоров происходит рост потребления электроэнергии CPU. Например, процессоры линейки Core i7 от Intel требуют до 130 и более ватт. Напряжение подающееся на ядро ярко характеризует энергопотребление процессора. Этот параметр особенно важен при выборе ЦП для использования в качестве мультимедиа центра. В современных моделях процессоров используются различные технологии, которые помогают бороться с излишним энергопотреблением: встраиваемые температурные датчики, системы автоматического контроля напряжения и частоты ядер процессора, энергосберегающие режимы при слабой нагрузке на ЦП.

Разгон процессора

ЦП — самая важная часть компьютера. Разгон еще больше увеличивает мощность ПК. Как уже упоминалось, если ваш компьютер ограничен мощностью процессора, страдает вся производительность. Что делать для разгона?

  • Загрузите компьютер вместе с BIOS.
  • Попав в меню, вы можете выбрать типы разгона: автоматический или ручной. К тому же часто есть заранее подготовленные параметры разгона, но они не разгоняют процессор более чем на 10%. Поэтому рекомендуется выбирать ручной режим.
  • Во-первых, определите, не знаете ли вы, какой у вас процессор.
  • Каждая материнская плата имеет свое устройство BIOS, поэтому поищите в Интернете, как получить доступ к меню разгона процессора.
  • Если компьютер не загружается или во время работы появляется синий экран смерти, похоже, вы разогнали разгон.
  • Запустите компьютер и посмотрите, как он работает.
  • Попробуйте увеличить множитель процессора на 10-15% (допустим, 220, а ставка 330).
  • Попробуйте найти информацию о разгоне вашей конкретной модели процессора у пользователей на Интернет-форумах. Будет указана максимально возможная частота, на которую другие пользователи могли довести процессор.

Что лучше AMD или Intel?

Это вечный спор, которому посвящены тысячи страниц форумов в интернете и однозначного ответа на него нет. Обе компании идут друг за другом, но для себя я сделал выбор что лучше. В двух словах – AMD производит оптимальные бюджетные решения, а Intel – более технологичные и дорогие продукты. AMD рулит в недорогом секторе, но у этой фирмы просто нет аналогов самым быстрым интеловским процессорам.

Процессоры не ломаются, как например мониторы или жёсткие диски, поэтому вопрос надёжности здесь не стоит. Т.е., если не разгонять «камень» и использовать вентилятор не хуже боксового (комплектного), то любой процессор прослужит много-много лет. Нет плохих моделей, но есть целесообразность покупки в зависимости от цены, характеристик и других факторов, например наличия той или иной материнской платы.

Предоставляю для ознакомления сводную таблицу примерной производительности в играх процессоров Intel и AMD на мощной видеокарте GeForce GTX1080, чем выше -> тем лучше:

Сравнение процессоров в задачах. приближённых к повседневным, обычная нагрузка:

Архивирование в 7-zip (меньше время — лучше результат):

Чтобы самостоятельно сравнивать разные процессоры, предлагаю использовать этот сайт. Итак, перейдём от многословия к конкретным рекомендациям.

Типы процессоров по производительности

Используемые в настоящее время в ноутбуках (и настольных ПК) процессоры можно четко разделить по производительности на 4 линейки (для процессоров Intel):

Intel Сore самые производительные процессоры
Intel Core M процессоры средней производительности
Intel Pentium ниже средней производительности
Intel Celeron процессоры низкой производительности

Помимо этого, процессоры линейки Core также подразделяются на классы, в зависимости от функциональных возможностей. Так, Core i3 — самые слабые в этой линейке, Core i5 — средние, Core i7 — мощные, а Core i9 — супермощные.

Pentium и Celeron производятся на основе ядра Atom и на основе ядра Core. Если вы видите в обозначении этого процессора первую цифру 3, например, Celeron N3010, то значит его год выхода 2015 и 2016. Цифра 4 означает более свежую модификацию 2017-2018 года.

Для современных ноутбуков актуальными являются процессоры 6, 7 и 8 поколения. Обозначается поколение первой цифрой в индексе чипа:

  • Core i3-6100U — 6 поколение Skylake (2015),
  • Core i5-6200U — 6 поколение Skylake (2015),
  • Core i7-6500U — 6 поколение Skylake (2015),
  • Core i7-7500U — 7 поколение Kaby Lake (2016),
  • Core i7-7Y75 — 7 поколение Kaby Lake (2016),
  • Core i7-8550U — 8 поколение Coffee Lake 2017 года.

Более свежие процессоры 2018 года имеют индекс К.

Обозначения у процессоров AMD более простое, а первая цифра означает год выхода:

  • 5 — 2013 год (A6-5200),
  • 6 — 2014 год (A6-6310),
  • 7 — 2015 год (A6-7310),
  • 9 — 2016 год (A6-9210).

В настоящее время средним по производительности процессором для ноутбуков является процессор AMD A12 9720P 2700 МГц, который пользователи приобретают для офисных и графических задач. Топовыми мобильными процессорами этого производителя считаются AMD Ryzen 7 2700U 2200 МГц и выше.

Тестирование в синтетических программах: CPU-Z

Теперь, когда мы разобрались с поведением двух экземпляров в стресс-тесте, предлагаю сравнить производительность процессоров в CPU-Z.

6 ядер

4 ядра

Для упрощения восприятия результатов тестирования, все данные были отображены в виде диаграммы с таблицей значений.

Результаты «математического бенчмарка» подтвердились. Четыре разогнанных ядра хоть и обошли шесть маломощных ядер в однопоточной производительности, но серьезно уступили во многоядерной производительности. Медленные шесть ядер обходят четыре быстрых на 12.5%, данная разница была известна еще заранее из «математического бенчмарка»: разница между 18 и 16 составляет 12.5%.

Тестирование CPU-Z

Количество ядер процессора

Некое, совсем небольшое, количество лет назад такого понятия как многоядерность не существовало вовсе. Сейчас же, «куда ни плюнь», сплошь многоядерные процессоры. В выборе количества ядер следует в первую очередь исходить из конкретных задач.

Понятно, что чем больше ядер, тем лучше, но если Вы используете компьютер для решения офисных задач по работе с документами, серфинга в интернете и легких мультимедийных задач, то, скорее всего, процессор с количеством ядер больше двух — это выброшенные на ветер деньги.

Вывод. Какой процессор выбрать исходя из этого? «Ядреность» процессоров призвана в первую очередь повысить производительность при работе со специально оптимизированным софтом, играми и приложениями. Поэтому, если Вы «штатный» юзер с минимальными целями и задачами, то смысла переплачивать за количество ядер – нет. Оптимальным вариантом будет: 2 ядра – для стандартного офисного ПК (эдакой рабочей лошадки) и 4 и более ядра – если Вы хотите использовать ПК в качестве мультимедийного и игрового центра.

Оперативная память

Также одним из наиболее важных компонентов компьютера является оперативная память, или, как ее еще называют, RAM (оперативная память). В отличие от жесткого диска, ОЗУ содержит временную информацию. То есть, когда игра запускается, сама игра находится на жестком диске, и действия, которые происходят в игре в это время на экране, сохраняются в оперативной памяти. Почему так, а не на жестком диске? Поскольку пропускная способность оперативной памяти в десятки раз превышает пропускную способность основного диска компьютера, именно здесь хранятся промежуточные данные. При загрузке локации в игре вам нужно быстро загружать файлы, а для этого вам нужно передать их через оперативную память или жесткий диск. Поскольку обработка жесткого диска займет во много раз больше времени, используется оперативная память.

Факторы, влияющие на мощность процессора

Разрядность процессора

Чем выше разрядность процессора, тем быстрее он может обрабатывать данные. Первые процессоры были 4-х битные. В настоящее время существуют 64-х разрядные ЦП и все операционные системы поддерживают их.

Количество ядер процессора

Чем больше ядер процессора задействовано в какой-то момент времени, тем больше его быстродействие, поскольку фактически работает не один процессор, а несколько. Соответственно, теоретически производительность возрастает в разы по сравнению с однопроцессорной системой.

Многопоточность

Каждое физическое ядро благодаря дополнительному набору регистров и достаточному количеству кэш-памяти может быть представлено в виде двух ЦП, каждый из которых выполняет минимальную задачу ОС – так называемый поток. Поток является самой маленькой неделимой единицей кода, за которой «следит» ОС. Собственно, разбитие на задачи – это фактически разбитие на потоки. Использование много поточности в некоторых случаях может дать выигрыш в производительности не хуже, чем даёт удвоение числа ядер.

Энергопотребление и охлаждение

В рамках одной технологии производства, чем выше быстродействие ЦП, тем больше он выделяет тепла, поэтому следует заранее подумать о том, что увеличение производительности должно сопровождаться увеличением эффективности системы охлаждения.

Встроенное графическое ядро

Этот модуль, по сути, является разновидностью математического сопроцессора, поскольку вся работа с графикой – это на 99% вычисления. Поэтому, если программа может использовать графическое ядро и задействовать его для своих нужд, мощность ЦП только увеличится.

Зависимость частоты процессора от количества ядер

Первые многоядерные ЦП работали на частотах существенно ниже топовых одноядерных ЦП, однако, превышали их по быстродействию. Естественно, своё давала оптимизация кода, однако, эффект был заметен уже тогда.

В настоящее время нет прямой зависимости между частотами ЦП и количеством ядер на нём в одном кристалле. Современные ЦП могут обладать как 12 ядрами с частотой 4 ГГц, так и 8 ядрами с частотами в 3 ГГц и 4.5 ГГц.

Влияние тактовой частоты процессора на производительность

Тактовая частота ЦП влияет на его производительность, однако, до какого-то значения. Дальнейший рост частоты приводит к существенному увеличению энергопотребления ЦП и её увеличение нецелесообразно. В настоящее время редко встречаются ЦП, работающие с частотами выше 5.0-5.5 ГГц.

Устройство процессора

Ключевыми компонентами процессора являются арифметико-логическое устройство (АЛУ), регистры и устройство управления. АЛУ выполнят основные математические и логические операции. Все вычисления производятся в двоичной системе счисления. От устройства управления зависит согласованность работы частей самого процессора и его связь с другими (внешними для него) устройствами. В регистрах временно хранятся текущая команда, исходные, промежуточные и конечные данные (результат вычислений АЛУ). Разрядность всех регистров одинакова.

Кэш данных и команд хранит часто используемые данные и команды. Обращение в кэш происходит намного быстрее, чем в оперативную память, поэтому, чем он больше, тем лучше.

Многопоточность и тому подобное

Часто многие путают такие понятия как многопоточность и многоядерность, однако это совершенно разные вещи. Многопоточность – это способность платформы (ОС, программы, приложения) работать в несколько потоков, выполняющихся параллельно. Для раскрытия всего потенциала многоядерных процессоров им необходима работа с многопоточными приложениями. К таким приложениям можно отнести: архиваторы, кодировщики видео, дефрагментаторы, браузеры, flash и пр.

Из ОС к «любителям» многопоточности можно отнести Windows 8, Windows 7 и различные Linux-системы.

Вывод. Какой процессор выбрать исходя из этого? Многопоточность зависит от оптимизации платформы разработчиком. Сейчас все больше игр и приложений достойно поддерживают эту способность. Однако не факт, что стоит искать в прайсах на процессоры этот параметр.

Эффект «узкого горлышка»

Надо сказать, что сочетание процессора и видеокарты нужно подбирать правильно. В противном случае вы можете столкнуться с таким явлением, как узкое место. В переводе с английского это означает «узкое место». Давайте выясним, что это такое и почему возникает. ЦП является важным модулем компьютера, и если он полностью загружен, а видеокарта еще не установлена, это называется эффектом узкого места, когда производительность компьютера ограничивается мощностью процессора, а не видеокартой. Чтобы избежать подобных ситуаций, необходимо выбирать более мощный процессор, чем тот, который подходит для видеокарты.

Виды процессоров

Прежде чем переходить к рассмотрению ключевых характеристик ЦП, необходимо разобраться каких видов он бывает. Центральных процессоров или CPU, как их называют заграницей много, и они разделяются по следующим критериям.

Мощности:

  • Бывают слабые, одноядерные модели, производство которых остановлено и приобрести их можно только после долгих поисков;
  • Средние и мощные модели, имеющие от 2 до 16 ядер;

По способу применения:

  1. Игровые;
  2. Серверные;
  3. Бюджетные;

По фирме производителю:

  • Центральный процессор от компании Intel;
  • ЦП от компании AMD;

Многие пользователи ошибочно полагают, что продукция компании Intel отличается от AMD только названием, но это далеко не так. Структура каждого центрального процессора, произведенного под торговой маркой данных компаний, существенно отличается от конкурентов. Благодаря этому, они обладают своими достоинствами и недостатками. Например, продукция компании Intel наделена следующими положительными характеристиками, выгодно отличающими их центральные процессоры от AMD:

  1. Большинство производителей комплектующих изделий для ПК подгоняют свою продукцию под стандарты CPU от Intel;
  2. Во время работы потребляют меньшее количество энергии, снижая нагрузку на систему;
  3. Показывают большее быстродействие при работе с одной программой;
  4. Лучший выбор для игровых сборок системных блоков;

Товары от AMD также имеют ряд характеристик, позволяющих им активно конкурировать на рынке компьютерного железа:

  • В отличии от ЦП производства Интел, центральные процессоры от АМД имеют функцию разгона, увеличивающую исходную мощность до 20%;
  • Лучшее соотношение цены и качества товаров;
  • Графические ядра, встроенные в ЦП, обладают большими возможностями чем Интеловские, позволяя быстрее работать с видео;

Виды процессоров и основные их производители

Существует множество видов процессоров от слабых одноядерных, до мощных многоядерных. От игровых и рабочих до средних по всем параметрам. Но, есть два основных лагеря ЦП – AMD и знаменитые Intel. Это две компании, производящие самые востребованные и популярные микропроцессоры на рынке. Основное различие между продукцией AMD и Intel – не количество ядер, а архитектура – внутреннее строение. Каждый из конкурентов предлагает свое строение «внутренностей», свой вид процессора, кардинально отличающуюся от конкурента.

У продуктов каждой из сторон есть свои плюсы и минусы, предлагаю кратко ознакомиться с ними поближе.

Плюсы процессоров Intel:

  • Обладает более низким потреблением энергии;
  • Разработчики больше ориентируются на Интел, чем на АМД;
  • Лучше производительность в играх;
  • Связь процессоров Интел с ОЗУ реализована лучше, нежели у АМД;
  • Операции, осуществляемые в рамках только одной программы (на пример разархивирование) идут лучше, АМД в этом плане поигрывает.

Минусы процессоров Intel:

  • Самый большой минус – цена. ЦП от данного производителя зачастую на порядок выше чем у их главного конкурента;
  • Производительность снижается при использовании двух и более «тяжелых» программ;
  • Интегрированные графические ядра уступают АМД;

Плюсы процессоров AMD:

  • Самый большой плюс — самый большой минус Intel – цена. Вы можете купить хороший середнячок от AMD, который будет на твердую 4, а может даже и 5 тянуть современные игры, при этом стоить он будет намного ниже чем аналогичный по производительности процессор от конкурента;
  • Адекватное соотношение качества и цены;
  • Обеспечивают качественную работу системы;
  • Возможность разгона процессора, повышая тем самым его мощность на 10-20%;
  • Интегрированные графические ядра превосходят Интел.

Минусы процессоров AMD:

  • Процессоры от АМД хуже взаимодействуют с ОЗУ;
  • Энергопотребление больше, чем у Интел;
  • Работа буферной памяти на втором и третьем уровне идёт на более низкой частоте;
  • Производительность в играх отстает от показателей конкурента;

Но, несмотря на приведенные достоинства и недостатки, каждая из компаний продолжает развиваться, их процессоры с каждым поколением становятся мощнее, а ошибки предыдущей линейки учитываются и исправляются.

Что такое тактовая частота?

Процессор – это сердце любого компьютера. Именно данный аппаратный модуль отвечает за производительность вычислительной машины. И важнейшая характеристика любого CPU – тактовая частота. Но что это за параметр? Если рассматривать вопрос с технической точки зрения, то тактовая частота – это количество операций, которые может выполнить процессор за определенное количество времени (секунду). В компьютерной технике такую операцию называют тактом. Именно из-за этого показатель производительности процессора и получил такое название.

В чем измеряется частота процессора? Единицей измерения производительности CPU являются герцы (сокращенный вариант – Гц), которые хорошо знакомы нам еще со школьного курса физики. Однако, что означают обозначения по типу 1,8 ГГц или 2МГц?

Все довольно-таки просто. Современные компьютеры обладают просто огромной мощностью. Вычислительные машины способны выполнять миллионы операций за секунду. Поэтому измерять производительность в герцах не особо удобно. Именно по этой причине к характеристике прибавляется приставка М (мега – 10 в степени 6) или же Г (гига – 10 в степени 9). То есть обозначение 1,8 ГГц говорит о том, что производительность устройства составляет 1,8 миллиардов герц, а 2 МГц – 2 миллиона герц.

На что обратить внимание при выборе процессора

Это были 3 основных характеристики компьютерного процессора – теперь время для всего остального.

TDP процессора

Thermal Design Power – это, в теории, параметр, который указывает количество тепла выделяемое процессором, выраженное в ваттах (Вт). В теории, потому что как Intel, так и AMD используют различную методику оценки этого значения, поэтому значения в графе TDP имеют разный смысл.

AMD определяет максимальную мощность, которую процессор может принять и отдать в виде тепла. Intel определяет TDP как максимальную потребляемую мощность в виде тепла, когда процессор загружен приложениями.

В действительности, этот параметр имеет значение при выборе системы охлаждения, которая должна иметь запас производительности.

Интегрированная графическая система

Если ищите компьютер по низкой цене или предназначенный для мультимедиа, то стоит рассмотреть интегрированную графическую систему. Почти все процессоры Intel имеют встроенный процессор Intel ultra-hd Graphics, а в случае процессоров Ryzen ищите маркировку G.

Технологический процесс

По-другому называется литография. Именно от него, в значительной степени, зависит потребность в энергии и то, как много тепла будет выделять процессор. Современные процессоры Intel производятся в 12-нанометровому техпроцессу. Чипы AMD также изготовлены в литографии 12 нм, однако, обе компании используют немного другие детерминанты, и эти значения де-факто не равны.

Чем выше технологический процесс, тем больше тока будет потреблять процессор и тем больше тепла будет создавать.

Основные характеристики

Чтобы лучше понять разницу между поколениями и сериями, следует знать основные характеристиках процессоров.

Ядра

Ядра (core) — первая спецификация, которую обсудим. Раньше все процессоры были одноядерными и только в 2005 году (с выпуском AMD Athlon X2 3800+) появились двухъядерные. После этого стало очевидно, что индустрия будет направлена на увеличение их количества.

Каждое ядро работает как отдельный процессор. Причем, отдельные ядра могут оставаться неактивными. Например, при использовании компьютера для просмотра веб-страниц и видео работает всего пару ядер, а остальные простаивают. Игры или обработка видео уже требуют большей мощности.

Потоки

Поток (thread) — это виртуальное ядро. То есть, при наличии физического процессора с двумя ядрами, операционная система может его видеть как четырехядерный. Это позволяет оптимизировать работу с многозадачностью за счет технологии многопоточности (SMT).

В процессорах Intel такая технология называют Hyperthreading, когда два виртуальных потока завязано на одно физическое ядро. Обычно такое разделение происходит без значительных потерь в производительности и эффективно увеличивает вычислительные способности. Особенно это заметно в приложениях, которые специально разделяют свои задачи на потоки.

Благодаря этой технологии, для современных игр почти всегда достаточно иметь всего 4 физических ядра с многопоточностью. Однако, большее количество ядер может потребоваться если одновременно с игрой планируется вести видеотрансляцию или параллельно выполнять другую работу.

Тактовая частота

Тактовая частота — одна из самых значимых характеристик. Указывает на максимально возможную скорость процессорных ядер в гигагерцах.Что интересно, за последние десятилетия эта характеристика не сильно изменилась. Уже давно был нормой стандарт скорости в 3 ГГц и с тех пор прогресс в этом направлении замедлился.

Но это не значит что реальная скорость практически не изменилась, просто прирост производительности стал достигаться больше за счет изменения архитектуры процессоров, а не тактовой частоты. Другими словами, два процессора с одинаковой тактовой частотой, но разной архитектурой, будут выполнять одинаковые задачи за разное время.

Архитектура

Архитектура процессора является важным фактором, определяющим производительность. Каждой из них в Intel дают кодовое название — Hawell, Skylake, CoffeLake. Чем она современней, тем лучше, так как с каждым поколением улучшаются многие характеристики и оптимизируются программные алгоритмы.

Также новая архитектура часто подразумевает новый технический процесс изготовления и увеличение объема кэш памяти.

Повышение мощности процессора

Для увеличения мощности ЦП применяется комплексный подход. При этом мероприятия разделяются на два типа: аппаратные и программные. Их целью является не только оптимизация работы системы, но и разгрузка ЦП от лишних задач, которые могли появиться у него из-за невнимания пользователя или того, кто занимался администрированием ПК.

«Аппаратные» мероприятия заключаются в оптимизации работы системы на уровне взаимодействия ЦП и различных периферийных устройств: от оперативной памяти и жестких дисков до видеокарты и клавиатуры. В общем случае, по части «железа» следует проделать такие манипуляции:

  1. Активировать все ядра на ЦП.
  2. Отключить использование технологий энергосбережения, работающих на самом низком уровне (например, уменьшение частоты ЦП при его неполной загрузке и т.д.).
  3. Улучшить работу системы охлаждения ЦП, проведя над ней профилактические работы или же заменив её на более совершенную.
  4. Оптимизировать работу ЦП и памяти, выставив оптимальные параметры следования управляющих сигналов, т.н. «задержки».
  5. В случае необходимости попробовать разогнать ЦП.

Набор аппаратных средств достаточно скромен, однако, его эффективность высокая. Например, правильно расставив тайминги памяти, можно увеличить быстродействие системы на 5-10%.

Теперь рассмотрим программные средства повышения мощности ЦП. Они гораздо разнообразнее и подчас эффективнее аппаратных, однако, не всегда приятны некоторым пользователям:

Избавиться от ненужных программ и служб, работающих в настоящее время в операционной системе. Программы следует остановить, а затем удалить. Службы – как минимум остановить и установить в режим ручного запуска.
Убрать из автозагрузки все программы, которыми вы не пользуетесь, или назначение которых непонятно, или те, которые внезапно стали появляться сами по себе.
Максимально освободить жесткие диски ПК от ненужной информации (старых программ, документов, временных хранилищ и т.д.) Больше свободного места позволит ОС тратить меньше процессорного времени на работу с файлами подкачки, оптимизацией дисков и т.д.
Отключить различные элементы визуального оформления рабочего стола и прочее. Настроить интерфейс системы на максимальное быстродействие.
Критическим и важным процессам в диспетчере задач поставить приоритет повыше, а малозначимым, но всё же нужным продуктам – пониже.
При помощи специальных приложений (например, CPU-Control) выставить не только максимальный приоритет для критически важных приложений, но и выделить им использование ЦП с максимально возможным числом ядер.
Отключить все процедуры, занимающиеся сбором информации и отправкой отчетов производителям того или иного программного обеспечения. Как правило, эти отчёты никто особо и не читает, а вот «фонового» времени на них ЦП потратит очень много. Также рекомендуется отменить фоновые проверки антивируса, либо поставить их в расписание не чаще 1 раза в неделю на то время, когда ПК не решает каких-то важных задач.
Максимально использовать принцип «в системе работает одна задача»

Если нужно работать в какой-то критически важной программе, на которую требуется большое количество мощности ЦП, то все ресурсы (приоритет, количество ядер, используемая память и т.д.) должны быть брошены именно на эту задачу. Остальные программы и окна должны быть закрыты, все ненужные службы отключены, антивирус приостановлен и т.д.

Функции процессора

Чтобы лучше понять назначение процессора, обратимся к его устройству. Обязательные составляющие: ядро процессора, состоящее из арифметико-логического устройства, внутренней памяти (регистров) и быстрой памяти (кэш), а также шины — устройства управления всеми операциями и внешними компонентами. Через шины в ЦПУ попадает информация, которую затем обрабатывает ядро.

Таким образом, в основные функции процессора входит:

  1. обработка информации с помощью арифметических и логических операций;
  2. управление работой всего аппаратного обеспечения компьютера.

Производительность оборудования зависит от характеристик процессора, о которых речь пойдет дальше.

Характеристики процессора

Тактовая частота процессора на сегодняшний день измеряется в гигагерцах (ГГц), Ранее измерялось в мегагерцах (МГц). 1МГц = 1 миллиону тактов в секунду.

Процессор «общается» с другими устройствами (оперативной памятью) с помощью шин данных, адреса и управления. Разрядность шин всегда кратна 8 (понятно почему, если мы имеем дело с байтами), изменчива в ходе исторического развития компьютерной техники и различна для разных моделей, а также не одинакова для шины данных и адресной шины.

Разрядность шины данных говорит о том, какое количество информации (сколько байт) можно передать за раз (за такт). От разрядности шины адресазависит максимальный объем оперативной памяти, с которым процессор может работать вообще.

На мощность (производительность) процессора влияют не только его тактовая частота и разрядность шины данных, также важное значение имеет объем кэш-памяти